Mathematische Berechungen zur Populationsgenetik

Aus jesus-der-christus.org

Literatur

Behe M. & Snoke D.W. (2004): Simulating evolution by gene duplication of protein features that require multiple amino acid residues. Protein Sci. 13: 2651–2664.

Behe M. & Snoke D.W. (2005): A response to Michael Lynch. Protein Sci. 14: 2226–2227.

Behe M. (2007): The Edge of Evolution. Free Press, New York, 336 S.

Durrett R. & Schmidt D. (2007): Waiting for regulatory sequences to appear. Ann. Appl. Probab. 17(1): 1–32.

Durrett R. & Schmidt D. (2008): Waiting for two mutations: with applications to regulatory sequence evolution and the limits of Darwinian evolution. Genetics 180: 1501–1509.

Durrett R., Schmidt D. & Schweinsberg J. (2009): A waiting time problem arising from the study of multi-stage carinogenesis. Ann. Appl. Probab. 19(2): 676–718.

Behrens S. & Vingron M. (2010): Studying evolution of promoter sequences: a waiting time problem. J. Comput. Biol. 17(12): 1591–1606.

Günter Bechlys Arbeiten dazu: Hössjer G., Bechly G., Gauger A. (2018): Phase-type distribution approximations of the waiting time until coordinated mutations get fixed in a population. Chapter 12 in: Silvestrov, S., Malyarenko, A. & Rancic, M. (eds): Stochastic Processes and Algebraic Structures - From Theory Towards Applications. Volume 1: Stochastic Processes and Applications. Springer Proceedings in Mathematics and Statistics 271: 245–313. DOI:10.1007/978-3-030-02825-1_12.

Hössjer G., Bechly G., Gauger A. (eingereicht 2020): On the waiting time until coordinated mutations get fixed in regulatory sequences.

Bechly G., Gauger A., Hössjer H. & Sternberg R.v. (in Vorber.): Temporal Constraints for the Evolution of the Whale Locomotory System (Mammalia: Cetacea: Pelagiceti).

Videos